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Abstract: Over the past 35 years, the proliferation of technology and the advent of the internet
have resulted in many reliable and easy to administer batteries for assessing cognitive function.
These approaches have great potential for affecting how the health care system monitors and
screens for cognitive changes in the aging population. Here, we review these new technologies with
a specific emphasis on what they offer over and above traditional ‘paper-and-pencil’ approaches to
assessing cognitive function. Key advantages include fully automated administration and scoring,
the interpretation of individual scores within the context of thousands of normative data points,
the inclusion of ‘meaningful change’ and ‘validity’ indices based on these large norms, more efficient
testing, increased sensitivity, and the possibility of characterising cognition in samples drawn from
the general population that may contain hundreds of thousands of test scores. The relationship
between these new computerized platforms and existing (and commonly used) paper-and-pencil tests
is explored, with a particular emphasis on why computerized tests are particularly advantageous for
assessing the cognitive changes associated with aging.
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1. Introduction

Cognitive assessment has been of interest to psychology, cognitive neuroscience, and general
medicine for more than 150 years. In the earliest reports, such as the widely-discussed case of
Phineas Gage [1], cognitive ‘assessment’ was based solely on observation and subjective reports of the
behavioural changes that followed a serendipitous brain injury. By the early 20th century, there had
been several attempts to standardize cognitive assessments by individuals such as James Cattell [2]
and Alfred Binet [3], although these were few and far between, often based on subsets of cognitive
processes, and designed with specific populations in mind (e.g., children). It was not until the 1950s,
60s and 70s that the field of cognitive assessment exploded, and dozens of batteries of tests were
developed, ‘normed’, and made widely available for general use (e.g., the Wechsler Adult Intelligence
Scale [4], the Wechsler Memory Scale [5], the Stroop task [6,7]).

In the 1980s, a shift in emphasis occurred, as portable computers became more accessible and
existing ‘paper and pencil’ cognitive assessments began to be digitized. Finally, by the turn of the century,
the emergence of the world wide web made ‘internet based’ testing a reality, resulting in the creation
of more reliable and efficient tests that could be taken from anywhere in the world. In parallel with
the development of computerized tests for cognitive assessment, computerized brain-training games
have also become popular (e.g., Lumosity). In this paper, we will only be discussing batteries designed
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for assessment (rather than ‘training’) purposes. Despite the proliferation of both laboratory-based
and internet-based computerized cognitive assessment platforms and the many advantages they
offer, these systems are still not as widely used as many of the classic paper-and-pencil batteries,
particularly in older adult populations. For example, a PsychInfo search for peer-reviewed journal
articles published in the 10 years between 1 July 2009 and 1 July 2019 that used the Wechsler Adult
Intelligence Scale [4] and the Mini-Mental State Examination [8] in participants over the age of
65 returned 983 and 2224 studies, respectively. By comparison, when the same parameters were used
to search for ‘computerized cognitive assessment’ only 364 results were returned.

The goal of this paper is to provide an overview of how both laboratory-based and internet-based
cognitive assessments have evolved since the 1980s when computerized approaches were first
introduced to the present day when they routinely make use of small, ultra-portable technologies
such as cell phones and tablets (e.g., iPads). We will focus our discussion on how these assessments
are being applied to detect and track dementia. Key differences between these new computerized
platforms and existing (and commonly used) paper-and-pencil tests will be discussed, with a particular
emphasis on why computerized tests are particularly advantageous for assessing the cognitive changes
associated with aging.

2. Computerized Cognitive Assessment—Historically

The computerization of cognitive assessment tools began in the 1980s with the development of
personal computers. Although initial digitization efforts mainly focused on the straight conversion
of paper-and-pencil tests to computerized formats, new methods of assessment soon began to be
developed that capitalized on emerging technologies (such as touchscreens, response pads, computer
mice, etc.). These new methods, when used alongside computers to collect data, led to the creation
of tests that were more efficient at assessing an individual’s abilities than their paper-and-pencil
equivalents. For example, computerized tests are able to measure response latencies with millisecond
accuracy and record and report on many aspects of performance simultaneously. Computers can
calculate scores and modify test difficulty on the fly, as well as automate instructions, practice questions,
and administration of the tests across large groups of people—something that is not so easy for
a human test administrator to accomplish. Moreover, because test difficulty can be adjusted on-the-fly,
assessments can be shorter and therefore less frustrating, or exhausting, for impaired individuals.
In addition, predefined criteria can dictate the maximum number of successes or failures that each
individual is exposed to, such that the subjective experience of being tested is equivalent across
participants. The reporting of scores also becomes easier and more accurate because their interpretation
can be made entirely objectively based on calculated statistics using information gleaned from large
normative datasets.

Some of these advantages lead to greater test sensitivity [9] and as such, computerized cognitive
assessments are valuable for investigating changes that may not be detected using conventional
methods. This makes them ideal for assessing and following subtle cognitive changes in aging over
the long term and increases the possibility that emerging mild cognitive impairments will be detected
as early as possible [10].

An early example of a set of computerized cognitive tests was the Cambridge Neuropsychological
Test Automated Battery (CANTAB). CANTAB was originally designed for the neuropsychological
assessment of neurodegenerative diseases and was the first touch-screen based, comprehensive,
computerized cognitive battery. CANTAB was standardized in nearly 800 older adult participants [11],
and early studies indicated that specific tests, or combinations of tests, were sensitive to deficits and
progressive decline in both Alzheimer’s disease and Parkinson’s disease [12–16]. Specific tests from
the CANTAB battery also appear to be able to predict the development of dementia in preclinical
populations, while also differentiating between different disorders such as Alzheimer’s disease
and Frontotemporal dementia [10,17,18]. This early example of a computerized neuropsychological
battery paved the way for others, designed to assess similar, or different, types of cognitive function
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and dysfunction (e.g., Cambridge Brain Sciences [19], Automatic Neuropsychological Assessment
Metrics [20], Computerized Neuropsychological Test Battery [21], Touch Panel-Type Dementia
Assessment Scale [22]).

Although the broad body of literature that has accumulated over the last 35 years indicates that
computerized tests are adept at detecting and monitoring cognitive decline in neurodegenerative
disorders, little consensus exists about which are the most effective and suitable for this task. Two recent
reviews described 17 such batteries as being suitable for use in aging populations (see [23,24] for tables
illustrating these batteries in detail). The consensus across both reviews was that, although broadly
valid for testing aging populations, many of these batteries had serious shortcomings. For example,
many batteries relied on normative data from small samples sizes or samples that lacked data specific
to older adults. Ultimately, both reviews suggested that how useful any given battery was must be
assessed on a case-by-case basis and that no one test, or battery of tests, could be singled out as being
the most reliable for screening and monitoring cognitive impairment in the elderly. Without doubt,
this general lack of consensus about computerized cognitive tests has contributed to their slow adoption
into health care systems. Clinicians are rightly hesitant to adopt any new platform for screening or
monitoring patients when normative population data are lacking [25], and this issue needs to be
urgently resolved. The obvious way to accomplish this is to greatly increase the number of participants
who have completed any given computerized test or battery, and generate norms based on these large
databases that can be used to assess the performance of groups or individuals with known, or suspected,
clinical disorders. For practical and economic reasons, this is not feasible when assessments need to be
taken by a trained administrator in a laboratory testing environment. However, with the advent of the
internet, mass ‘self-administration’ of computerized cognitive tests has become a reality, opening up
many new and transformative opportunities in this domain.

3. Cognitive Assessment in the Internet Age

The internet and the proliferation of portable computers into every aspect of our lives (e.g., phones,
TVs, tablets), has created many new opportunities, and challenges, for computerized cognitive
assessment. For example, by making cognitive assessments available online, a much larger number of
participants can be reached than would be possible when the tests are administered on paper and/or
in a laboratory setting. With increasing numbers, demographic variables such as age, geographical
location and socioeconomic status can also be fed into each assessment, and on-the-fly comparisons
with large normative databases can be used to provide ‘personalized’ results that take these factors
into account.

One example of such an online tool is the Cambridge Brain Sciences (CBS) platform. The tests
in this battery are largely based on well validated neuropsychological tasks but have been adapted
and designed to capitalize on the numerous advantages that internet and computer-based testing can
offer. The CBS battery has been used to conduct several large-scale population-based studies involving
tens of thousands of participants from all over the world [19,26], as well as more than 300 bespoke
scientific studies (e.g., [27–29]). As testament to the ‘power of the internet’, in total, more than 8 million
tests have been taken, and normative data from 75,000 healthy participants are available, including
approximately 5000 adults over the age of 65.

Having access to such a large number of datapoints also makes it possible to investigate how
demographic factors affect cognition in a way and on a scale that was never before feasible, shedding
new light on the interplay between biology and environmental factors and their effects on cognitive
function. For example, in one recent study of 45,000 individuals, the CBS battery was used to examine
the influence of factors like gender differences, anxiety, depression, substance abuse, and socio-economic
status on cognitive function, as well as how they interact during the aging process to uniquely affect
different aspects of performance [30].

Other computerized assessment batteries that have been used in older adult populations include
the Automatic Neuropsychological Assessment Metrics [20], Computerized Neuropsychological Test
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Battery [21], and the Touch Panel-Type Dementia Assessment Scale [22]. Each of these batteries
consists of a series of tests designed to measure various aspects of cognitive functioning such as
processing speed, memory retention, and working memory using tasks based on command following,
object recognition, logical reasoning, mathematical processing, and symbol-digit coding.

3.1. Meaningful Change

When normative databases include tens of thousands of participants, it becomes possible to
compute indices that are simply not possible with smaller (e.g., lab-based) data samples. Estimates of
‘meaningful’ or ‘reliable’ change are one such example that has particular relevance for monitoring
cognitive decline or improvement on an individual basis. Estimates of meaningful or reliable change
compare the difference in an individual’s performance on a task between two time points (e.g., between
a patient’s current assessment results and previous baseline results) to the variability in repeated
measurements that would occur in the absence of a meaningful change. The latter is estimated from
a sample of healthy control subjects, and the larger that sample is, the better. Gathering data from
a large number of individuals via online testing allows for a database of thousands of normative
data points [19,31]. The meaningful change index used by the CBS platform, for example, uses the
test-retest reliability and the standard deviation of scores (measured in the control sample) of each
task to describe the range of possible differences that could occur with repeated task completion.
If an individual’s change in performance from one time point to another is much larger than expected
by chance (i.e., larger than the fluctuations seen in the control sample), then one can conclude that
there was a meaningful change. This may be crucial for evaluating a single aging patient and deciding
whether or not a change in performance from one assessment to the next is ‘meaningful’ or simply
a reflection of the day to day fluctuations that are characteristic of healthy cognitive functioning.
The above method of calculating a meaningful change score is one example of how computerized
cognitive testing can be used to monitor cognitive changes over time. Other methods that, for example,
investigate the longitudinal measurement invariance can also be used [32,33] to determine whether the
scores from a single metric collected over time are stable or changing in a meaningful way.

The increased size of the normative database to which individual scores are compared is one
way in which modern internet-based assessment tools are able to address an issue raised by Zygouris
and Tsolaki [24]; that is, physicians rarely have time to wade through the complicated data output
of computerized testing batteries to interpret their meaning. When the meaning of test results can
be determined through automated statistical algorithms that interrogate a large normative database,
the task of interpreting test results is offloaded to the battery itself (something that is clearly not possible
with traditional pencil-and-paper methods). When a meaningful change is detected, caregivers or
health care providers can be alerted ‘automatically’ so that more in-depth testing can be initiated to
assess the individual’s cognitive status. This has relevance in home care, assisted living facilities, and in
hospital settings for reducing the administrative burden of monitoring cognitive changes, while also
increasing the sensitivity of testing to catch important changes early enough to be appropriately
addressed. This in turn, increases the likelihood that physicians will be amenable to adopting these
methods for monitoring and screening aging individuals because the logistic and economic overheads
are low. In addition, the immediate delivery, objectivity, and interpretation of scores makes them
straightforward for non-experts to understand and increases the probability that these methods will
be adopted into the broader health care system because any health care provider or family member
can, in principle, monitor an aging patient’s cognitive changes over time, the effect of drugs, or even
cognitive changes post-surgically [34].

3.2. Validity of At-Home Testing

As we have implied above, one of the main advantages of internet-based testing is that it can be
conducted at home (or theoretically, anywhere), as long as a computer with an internet connection
is available. One of the obvious questions, however, is its validity in comparison to in-lab testing.



Diagnostics 2019, 9, 114 5 of 13

To assess this question, we had 19 healthy young adult control participants complete the full CBS
battery (12 tests) both while unsupervised at home and while supervised in the laboratory (test order
was counterbalanced across participants). The mean standardized scores for each of the tests showed
no significant effect of at home versus in laboratory testing (F = 1.71, p = 0.2) and the tasks showed
reliable correlations within participants across the two testing environments (p < 0.05) (See Figure 1A).
A follow-up study explored whether the stability in scores across testing environments was applicable
to patient groups as well as healthy controls. A total of 27 participants with Parkinson’s disease were
assessed on 4 of the 12 CBS tests at home and in-lab as well as tests of simple and choice reaction time
similar to the ones included in the CANTAB battery (the order of tasks was counterbalanced across
participants). Again, there was no significant effect of at home versus in-lab testing (p > 0.1), and the
tasks showed reliable correlations across the two testing environments (p < 0.05) (See Figure 1B).
Moreover, the results of the simple and choice reaction time tasks demonstrated that response time
measures could be collected accurately over the internet, regardless of the testing platform used.
Together, the results of these two studies indicate that computerized tests taken unsupervised at
home produce results no different than those taken in a laboratory, both in healthy controls and in
a patient population.
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training on the task over several weeks [35]. 

Figure 1. (A) average standardized scores on the 12 Cambridge Brain Sciences (CBS) tasks taken at
home and in the lab by 19 healthy young adult controls. The results showed no significant effect of at
home versus in laboratory testing (F = 1.71, p = 0.2); (B) average raw scores on 4 CBS tasks as well as
simple and choice reaction time tasks taken at home and in the lab by 27 patients with Parkinson’s
Disease. Again, there was no significant effect of at home versus in-lab testing (p > 0.1) and the tasks
showed reliable correlations across the two testing environments (p < 0.05).

In a third recently published study examining the relationship between unsupervised cognitive
testing ‘at home’ and supervised lab-based assessment, the performance of more than 100 participants
was compared on three of the CBS tests, Digit Span, Spatial Span and Token Search [35] There were
no significant differences in performance between those participants who completed the tests online
via Amazon’s MTurk platform and those who completed the testing supervised within the laboratory
(Figure 2). In the case of the Token Search test, this was even true after extensive training on the task
over several weeks [35].
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Figure 2. Average scores on 3 CBS tasks (Digit Span, Spatial Span and Token Search), taken at home and
in the lab by more than 100 young adult controls. The results showed no significant effect of at home
versus in laboratory testing [35]. In the case of Token Search (lower panel), the overlap in performance
for participants tested at home using Amazon’s MTurk and those tested in the laboratory persisted
even after several weeks of intensive training on the task [35].

Another advantage of internet-based testing and large-scale normative databases is that it is
relatively straightforward to calculate indicators of ‘validity’ on-the-fly which can then be used to
‘flag’ when testing has not been completed properly, or according to the instructions. By analyzing
thousands of data points, a set of parameters can be defined that must be met for a score on a test to be
considered valid. Including a simple and easy-to-read marker on a score report that conveys whether
performance on a task is within reasonable bounds increases the usability and confidence in the test by
health care providers.

Finally, there are other mechanisms that can be used to ensure reliable data are collected when
tasks are self-administered at home in online settings. For example, interactive learning tutorials can
guide participants through practice trials and objectively determine when an individual has understood
task instructions before beginning a testing session. Such practice trials increase the validity of the
tests, particularly when they are taken for the first time.

4. Online Testing vs. Existing Alternatives

The ability to quickly and accurately assess changes in cognitive functioning on a regular basis
has implications for quality of life, level of independence, and degree of care in the aging adult
population. Currently, assessments like the Mini-Mental Status Exam (MMSE) [8] and the Montreal
Cognitive Assessment (MoCA) [36] are used by health care providers to monitor cognitive changes
and screen for deficits. Although these tests are useful because they are short and easy to administer,
there are some downsides to using these paper-and-pencil based methods of assessment. For example,
they are not adaptive to an individual’s ability level, which can lead to frustration in patients with
deficits or unnecessary redundancy in individuals who are clearly completely unimpaired. In addition,
the questions are not randomly generated with each administration (so opportunities for retesting are
reduced). Third, these tests must be administered by a trained individual, which introduces testing
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bias and takes time and resources away from other health care duties. Fourth, rather than detecting
fine grained changes in cognition, these paper-pencil tests assign patients to very broad categories
(impaired or unimpaired)—binary classification of this sort is highly susceptible to error through day
to day fluctuations in normal cognitive functioning. Finally, the cutoff scores used in these tests may
not be appropriate for aging populations [37–39] and result in larger numbers of patients being labeled
as ‘impaired’ than perhaps is necessary.

Several recent studies have investigated whether short computerized assessments can effectively
monitor cognitive changes over time and better differentiate between older adult populations with
differing abilities than the most widely used paper-and-pencil alternatives. When 45 older adults
recruited from a geriatric psychiatry outpatient clinic were tested on five computerized tests from the
CBS battery, results showed that some of these tests provided more information about each individual’s
cognitive abilities than the standard MoCA when administered on its own [40]. The addition of
scores from just two of the computerized tests (total testing time of 6 min) to a MoCA, better sorted
participants into impaired or unimpaired categories. Specifically, 81% of those patients who were
classified as being borderline (between ‘impaired’ and ‘not impaired’) based on their MoCA scores
alone were reclassified as one or the other when scores from two computerized tests were introduced.
Additionally, this study demonstrated that some computerized tests provide more information than
others when used in this context. That is to say, two of the five tests employed were not at all useful in
classifying borderline patients and the fifth test was too difficult for the older adults to understand
and complete.

To follow-up this study, we recently investigated whether other tests in the CBS battery, beyond
the five used by Brenkel et al. [40], could provide more information about older adults’ cognitive
abilities, as well as whether traditional tests like the MoCA or the MMSE could be replaced entirely by
an online computerized assessment battery.

A total of 52 older adults (average age = 81 years, 62–97 years) were asked to complete the
12 online tests from the CBS battery in random order. Each task was presented on a touchscreen tablet
computer and was preceded by instructions and practice trials. Afterwards, the MoCA (version 7.1
English) and MMSE were administered in interview format, always by the same person (AS). Possibly
because of the location of the retirement homes from which participants were recruited, the sample
was highly educated. All but one earned high school diplomas, 24 earned postsecondary degrees,
and 16 earned postgraduate degrees. Two participants did not complete all 12 tasks due to fatigue
and loss of interest; thus 50 participants’ scores were analysed. MoCA scores ranged from 12–30
(mean = 24.6) and MMSE scores ranged from 16–30 (mean = 27.7; see Supplementary Figure S1).

Participant scores were split into three categories based on the results of the MoCA test
(See Figure 3): unimpaired (n = 25; MoCA score ≥ 26), borderline cognitive impairment (n = 14;
MoCA score 23–25), and impaired (n = 12; MoCA score ≤ 22), based on thresholds from previous
literature (e.g., [36–38]). Each participant in the borderline MoCA group was then reclassified to either
the impaired or unimpaired groups based on their CBS test scores. A ceiling effect precluded such
an analysis for the MMSE results.

Using the MoCA score alone, 72% of participants were classified as impaired or unimpaired.
The addition of a single CBS task (Spatial Planning) improved this classification to 92% of the
participants. This was not simply because Spatial Planning was the most difficult test, as the equally
difficult Spatial Span test left 5 participants in the borderline group. Test difficulty was determined
from an unrelated study with scores from 327 participants age 71–80 (see Supplementary Figure S2).

A second analysis using a step-wise multiple regression indicated that MoCA scores were best
predicted by two additional CBS tests: Odd One Out and Feature Match (R2 = 0.65). Age did not
significantly predict any variance over and above these tests. Alone, age predicted 22% of the variance
in MoCA scores (R2 = 0.22). Another step-wise multiple regression showed that MMSE scores were
best predicted by Feature Match and Grammatical Reasoning (R2 = 0.38). Again, age did not explain
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a significant amount of variance over and above the task scores. Alone, age predicted 8% (R2 = 0.08) of
the variance in MMSE scores.

A third regression showed that level of education did not explain a significant amount of variance
in MMSE or MoCA scores, although this may be due to overall high educational levels and the ceiling
effect seen in MMSE scores (see Supplementary Figure S1).

Scores on the three CBS tasks identified in the two analyses (Feature Match, Odd One Out, Spatial
Planning) were then combined to create a composite score. The composite score was highly correlated
with MoCA scores and was better than the MoCA alone at differentiating impaired from unimpaired
participants (84% versus 72% for the MoCA on its own; see Figure 3).
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scores and better differentiated impaired and unimpaired individuals. The border colour of each
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tests is used.

The results discussed above illustrate the potential that short computerized tests have as screening
tools for efficiently monitoring cognitive changes over time. This study also suggests that minimal
computer literacy is required when using a touchscreen tablet as technical limitations did not preclude
individuals from participating. Another potential use for computerized testing is as a replacement for,
or supplement to, neuropsychological assessments that are used for the diagnosis of various brain
disorders. In one recent foray into this area, the relationship between a 30 min computerized testing
battery and a standard 2–3 h neuropsychological assessment [41] was explored in 134 healthy adults
(mean age was 47 years). Although the computerized testing battery could not account for significant
variance in the assessments of verbal abilities (e.g., WASI Vocabulary subtest, Word List Generation),
it did account for 61% of the variance in the remainder of the traditional neuropsychological battery.
The results confirmed that a 30 min internet-based assessment of attention, memory, and executive
functioning was comparable to a standard 2–3 h neuropsychological test battery and may even have
some diagnostic capabilities.
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In the sections above, we have sought to illustrate our arguments with just a few examples of how
cognitive changes in older adults can be effectively monitored using self-administered, internet-based
computerized testing batteries. Although further validation is required in some cases, there is already
good reason to believe that a shift towards internet-based computerized cognitive testing in health
care may be warranted.

5. Neural Validation

A key aspect to cognitive assessment is validating the areas of the brain that are involved in the
cognitive functions in question. This has long been the domain of neuropsychologists who use results
from neurally validated assessments to triangulate brain function from behavioural assessment results.
Historically, cognitive assessments were validated using brain lesion studies, but the rise of imaging
technologies has made the neural validation of newly developed cognitive assessments accessible and
easier to complete.

Coincidentally, the computerization of cognitive assessments has grown alongside this increase
in the availability of imaging tools. These parallel timelines have resulted in many examples of
computerized cognitive tasks that have been validated from the get-go with neural information gleaned
from neuroimaging studies [19,42]. Importantly, however, these imaging studies have underscored
the fact that there is rarely a one-to-one mapping between cognitive functions and the brain areas,
or networks, that underpin them. One approach to this issue is to examine the complex statistical
relationships between performance on any one cognitive task (or group of tasks) and changes in brain
activity to reveal how one is related to the other. In order to do this most effectively, large amounts of
data need to be included because of the natural variance in cognitive performance (and brain activity)
across tests and across individuals. In the age of computerized internet testing and so-called ‘big data’,
this problem becomes much easier to solve. Thus, the sheer amount of data that can be collected
allows statistical tests to be performed that were simply not possible when data were collected by
hand. For example, Hampshire et al. [19] collected data on the 12 CBS tasks from 45,000 participants.
These data were then subjected to a factor analysis, and 3 discrete factors relating to overall cognitive
performance were identified. Each one of these factors represents an independent cognitive function
that is best described by a combination of performance on multiple tests, something that no single test
can assess, and were labeled as encapsulating aspects of short-term memory, reasoning, and verbal
abilities, respectively. This technique allows an individual’s performance to be compared to a very
large normative database in terms of these descriptive factors rather than performance on a single test.

As an example of how this might be applied to a question related directly to aging, Wild et al. [31]
recently used this same approach to investigate how sleeping patterns affect cognitive function across
the lifespan in a global sample of more than 10,000 people. Using the same analysis of factor structure
employed previously by Hampshire et al. [19], the results showed that the relationship between sleep
and short-term memory, reasoning and verbal factors was invariant with respect to age, overturning
the widely-held notion that the optimal amount of sleep is different in older age groups. Indeed,
sleep-related impairments in these three aspects of cognition were shown to affect all ages equally,
despite the fact that, as expected, older people tended to sleep less [31]. Put simply, the amount of
sleep that resulted in optimal cognitive performance (7–8 h), and the impact of deviating from this
amount, was the same for everyone—regardless of age. Somewhat counter-intuitively, this implies that
older adults who slept more or less than the optimal amount were impacted no more than younger
adults who had non-optimal sleep. If sleep is especially important for staving off dementia and
age-related cognitive decline [43], then one might predict that a lack of sleep (or too much sleep) would
be associated with more pronounced cognitive impairment in the elderly than in younger adults.
Nonetheless, given that 7–8 h of sleep was associated with optimal cognition for all ages and that
increasing age was associated with less sleep, the results suggest that older populations in general
would likely benefit from more sleep.
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Additionally, the neural networks responsible for cognitive factors that are derived from
analysing data from multiple tests across large samples of participants can be assessed. For example,
Hampshire et al. [19] described the neural correlates of each factor in a group of 16 healthy young
participants who completed the testing battery in an fMRI scanner. The short-term memory factor
was related to activation in the insula/frontal operculum, the superior frontal sulcus, and the ventral
portion of the anterior cingulate cortex and pre-supplementary motor areas. The reasoning factor was
related to activation in the inferior frontal sulcus, the inferior parietal cortex, and the dorsal portion of
the anterior cingulate and pre-supplementary motor areas. The verbal factor was related to activation
in the left inferior frontal gyrus and the bilateral temporal lobes. These data indicate that identifying
the neural correlates of cognitive functions is possible with a very large database of participants
allowing for complex statistical tests to be performed to interrogate their complex inter-relationships.
Computerized assessments are particularly suited to the task of collecting thousands of datapoints
and combined with imaging data can provide valuable insights into how a brain injury or neural
degeneration as a result of aging affects the brain networks responsible for complex cognitive functions.

6. Conclusions

Computerized cognitive assessments have come a long way in the past 35 years. The proliferation
of technology has resulted in reliable and easy to administer batteries that have great potential for
affecting how the health care system monitors and screens for cognitive changes in the aging population.
Importantly, modern computerized and internet-based cognitive tasks have been designed to capitalize
on the many advantages that computers can offer to create more efficient and accurate assessments than
existing paper-and-pencil options. One of the key advantages is the way in which these tasks are scored
and interpreted. Computerized tests can use statistical measures to interpret one individual’s score
within the context of thousands of normative data points and provide an objective interpretation of
that individual’s performance ‘on-the-fly’. This shift moves away from the traditional intuition-based
approach that more typically required a highly trained individual to interpret a constellation of
test scores.

The objective nature of computerized test scores has implications for the adoption of these test
batteries into health care because they do not need to be administered or interpreted by a highly trained
individual. These batteries can be used by physicians, family members, or other front-line health care
workers to monitor for subtle changes in cognition. Catching these changes and flagging them for
a more thorough follow-up with the appropriate health-care professional helps to improve quality
of life in patients with declining cognitive abilities as well as moves the responsibility of monitoring
cognitive changes from a few highly trained individuals to a large number of front-line health-care
providers. In short, self-administered online cognitive testing batteries have the potential to help close
the dementia diagnosis gap without adding undue burden to the existing health care system.
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Author Contributions: Conceptualization; writing–reviewing and editing, A.S., A.B., and A.M.O.; writing–original
draft preparation, A.S.; funding acquisition, A.M.O.

Funding: This research was funded by the Canada Excellence Research Chairs Program (#215063), the Canadian
Institutes of Health Research (#209907), and the Natural Sciences and Engineering Research Council of
Canada (#390057).

Conflicts of Interest: The online cognitive tests (Cambridge Brain Sciences) discussed in this review are marketed
by Cambridge Brain Sciences Inc, of which Dr. Owen is the unpaid Chief Scientific Officer. Under the terms
of the existing licensing agreement, Dr. Owen and his collaborators are free to use the platform at no cost for
their scientific studies and such research projects neither contribute to, nor are influenced by, the activities of
the company. As such, there is no overlap between the current review and the activities of Cambridge Brain
Sciences Inc, nor was there any cost to the authors, funding bodies or participants who were involved in the
mentioned studies.

http://www.mdpi.com/2075-4418/9/3/114/s1


Diagnostics 2019, 9, 114 11 of 13

References

1. Harlow, J.M. Passage of an iron rod through the head. Boston Med. Surg. J. 1848, 39, 389–393. [CrossRef]
2. Cattell, J.M.; Farrand, L. Physical and mental measurements of the students of Columbia University.

Psychol. Rev. 1896, 3, 618–648. [CrossRef]
3. Binet, A. L’étude expérimentale de l’intelligence; Schleicher frères & cie: Paris, France, 1903.
4. Wechsler, D. Manual for the Wechsler Adult Intelligence Scale; Psychological Corp.: Oxford, UK, 1955.
5. Wechsler, D. A standardized memory scale for clinical use. J. Psychol. 1945, 19, 87–95. [CrossRef]
6. Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [CrossRef]
7. Golden, C.J. Stroop Color and Word Test: A Manual for Clinical and Experimental Uses; Stoelting Co.: Wood Dale,

IL, USA, 1978.
8. Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive

state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [CrossRef]
9. Bor, D.; Duncan, J.; Lee, A.C.H.; Parr, A.; Owen, A.M. Frontal lobe involvement in spatial span: Converging

studies of normal and impaired function. Neuropsychologia 2006, 44, 229–237. [CrossRef]
10. Blackwell, A.D.; Sahakian, B.J.; Vesey, R.; Semple, J.M.; Robbins, T.W.; Hodges, J.R. Detecting Dementia:

Novel Neuropsychological Markers of Preclinical Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2003,
17, 42–48. [CrossRef]

11. Robbins, T.W.; James, M.; Owen, A.M.; Sahakian, B.J.; McInnes, L.; Rabbitt, P. Cambridge Neuropsychological
Test Automated Battery (CANTAB): A Factor Analytic Study of a Large Sample of Normal Elderly Volunteers.
Dementia 1994, 5, 266–281. [CrossRef]

12. Downes, J.J.; Roberts, A.C.; Sahakian, B.J.; Evenden, J.L.; Morris, R.G.; Robbins, T.W. Impaired
extra-dimensional shift performance in medicated and unmedicated Parkinson’s disease: Evidence for
a specific attentional dysfunction. Neuropsychologia 1989, 27, 1329–1343. [CrossRef]

13. Morris, R.G.; Downes, J.J.; Sahakian, B.J.; Evenden, J.L.; Heald, A.; Robbins, T.W. Planning and spatial
working memory in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1988, 51, 757–766. [CrossRef]

14. Sahakian, B.J.; Owen, A.M. Computerized assessment in neuropsychiatry using CANTAB: discussion paper.
J. R. Soc. Med. 1992, 85, 399–402.

15. Sahakian, B.J.; Morris, R.G.; Evenden, J.L.; Heald, A.; Levy, R.; Philpot, M.; Robbins, T.W. A comparative
study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson’s Disease. Brain
1988, 111, 695–718. [CrossRef]

16. Sahakian, B.J.; Downes, J.J.; Eagger, S.; Everden, J.L.; Levy, R.; Philpot, M.P.; Roberts, A.C.; Robbins, T.W.
Sparing of attentional relative to mnemonic function in a subgroup of patients with dementia of the Alzheimer
type. Neuropsychologia 1990, 28, 1197–1213. [CrossRef]

17. Swainson, R.; Hodges, J.R.; Galton, C.J.; Semple, J.; Michael, A.; Dunn, B.D.; Iddon, J.L.; Robbins, T.W.;
Sahakian, B.J. Early detection and differential diagnosis of Alzheimer’s disease and depression with
neuropsychological tasks. Dement. Geriatr. Cogn. Disord. 2001, 12, 265–280. [CrossRef]

18. Lee, A.C.H.; Rahman, S.; Hodges, J.R.; Sahakian, B.J.; Graham, K.S. Associative and recognition memory for
novel objects in dementia: implications for diagnosis. Eur. J. Neurosci. 2003, 18, 1660–1670. [CrossRef]

19. Hampshire, A.; Highfield, R.R.; Parkin, B.L.; Owen, A.M. Fractionating Human Intelligence. Neuron 2012,
76, 1225–1237. [CrossRef]

20. Kane, R.; Roebuckspencer, T.; Short, P.; Kabat, M.; Wilken, J. Identifying and monitoring cognitive deficits in
clinical populations using Automated Neuropsychological Assessment Metrics (ANAM) tests. Arch. Clin.
Neuropsychol. 2007, 22, 115–126. [CrossRef]

21. Veroff, A.E.; Cutler, N.R.; Sramek, J.J.; Prior, P.L.; Mickelson, W.; Hartman, J.K. A new assessment tool for
neuropsychopharmacologic research: the Computerized Neuropsychological Test Battery. Top. Geriatr. 1991,
4, 211–217. [CrossRef]

22. Inoue, M.; Jimbo, D.; Taniguchi, M.; Urakami, K. Touch Panel-type Dementia Assessment Scale: A new
computer-based rating scale for Alzheimer’s disease: A new computer-based rating scale for AD.
Psychogeriatrics 2011, 11, 28–33. [CrossRef]

http://dx.doi.org/10.1176/jnp.11.2.281
http://dx.doi.org/10.1037/h0070786
http://dx.doi.org/10.1080/00223980.1945.9917223
http://dx.doi.org/10.1037/h0054651
http://dx.doi.org/10.1016/0022-3956(75)90026-6
http://dx.doi.org/10.1016/j.neuropsychologia.2005.05.010
http://dx.doi.org/10.1159/000074081
http://dx.doi.org/10.1159/000106735
http://dx.doi.org/10.1016/0028-3932(89)90128-0
http://dx.doi.org/10.1136/jnnp.51.6.757
http://dx.doi.org/10.1093/brain/111.3.695
http://dx.doi.org/10.1016/0028-3932(90)90055-S
http://dx.doi.org/10.1159/000051269
http://dx.doi.org/10.1046/j.1460-9568.2003.02883.x
http://dx.doi.org/10.1016/j.neuron.2012.06.022
http://dx.doi.org/10.1016/j.acn.2006.10.006
http://dx.doi.org/10.1177/089198879100400406
http://dx.doi.org/10.1111/j.1479-8301.2010.00345.x


Diagnostics 2019, 9, 114 12 of 13

23. Wild, K.; Howieson, D.; Webbe, F.; Seelye, A.; Kaye, J. The status of computerized cognitive testing in aging:
A systematic review. Alzheimers Dement. 2008, 4, 428–437. [CrossRef]

24. Zygouris, S.; Tsolaki, M. Computerized Cognitive Testing for Older Adults: A Review. Am. J. Alzheimer’s Dis.
Other Dement. 2015, 30, 13–28. [CrossRef]

25. Barnett, J.H.; Blackwell, A.D.; Sahakian, B.J.; Robbins, T.W. The Paired Associates Learning (PAL) Test:
30 Years of CANTAB Translational Neuroscience from Laboratory to Bedside in Dementia Research. Curr. Top.
Behav. Neurosci. 2016, 28, 449–474.

26. Owen, A.M.; Hampshire, A.; Grahn, J.A.; Stenton, R.; Dajani, S.; Burns, A.S.; Howard, R.J.; Ballard, C.G.
Putting brain training to the test. Nature 2010, 465, 775–778. [CrossRef]

27. Metzler-Baddeley, C.; Caeyenberghs, K.; Foley, S.; Jones, D.K. Task complexity and location specific changes
of cortical thickness in executive and salience networks after working memory training. NeuroImage 2016,
130, 48–62. [CrossRef]

28. Pausova, Z.; Paus, T.; Abrahamowicz, M.; Bernard, M.; Gaudet, D.; Leonard, G.; Peron, M.; Pike, G.B.;
Richer, L.; Séguin, J.R.; et al. Cohort Profile: The Saguenay Youth Study (SYS). Int. J. Epidemiol. 2017, 46, e19.
[CrossRef]

29. Esopenko, C.; Chow, T.W.P.; Tartaglia, M.C.; Bacopulos, A.; Kumar, P.; Binns, M.A.; Kennedy, J.L.; Müller, D.J.;
Levine, B. Cognitive and psychosocial function in retired professional hockey players. J. Neurol. Neurosurg.
Psychiatry 2017, 88, 512–519. [CrossRef]

30. Nichols, E.S.; Wild, C.J.; Owen, A.M.; Soddu, A. Cognition across the lifespan: Aging and gender differences.
Cognition. in submission.

31. Wild, C.J.; Nichols, E.S.; Battista, M.E.; Stojanoski, B.; Owen, A.M. Dissociable effects of self-reported daily
sleep duration on high-level cognitive abilities. Sleep 2018, 41, 1–11. [CrossRef]

32. Schaie, K.; Maitland, S.B.; Willis, S.L.; Intrieri, R. Longitudinal invariance of adult psychometric ability factor
structures across 7 years. Psychol. Aging 1998, 13, 8–20. [CrossRef]

33. Widaman, K.F.; Ferrer, E.; Conger, R.D. Factorial Invariance within Longitudinal Structural Equation Models:
Measuring the Same Construct across Time. Child. Dev. Perspect. 2010, 4, 10–18. [CrossRef]

34. Honarmand, K.; Malik, S.; Wild, C.; Gonzalez-Lara, L.E.; McIntyre, C.W.; Owen, A.M.; Slessarev, M. Feasibility
of a web-based neurocognitive battery for assessing cognitive function in critical illness survivors. PLoS ONE
2019, 14, e0215203. [CrossRef]

35. Stojanoski, B.; Lyons, K.M.; Pearce, A.A.A.; Owen, A.M. Targeted training: Converging evidence against
the transferable benefits of online brain training on cognitive function. Neuropsychologia 2018, 117, 541–550.
[CrossRef]

36. Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.;
Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive
impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [CrossRef]

37. Gluhm, S.; Goldstein, J.; Loc, K.; Colt, A.; Liew, C.V.; Corey-Bloom, J. Cognitive Performance on the
Mini-Mental State Examination and the Montreal Cognitive Assessment Across the Healthy Adult Lifespan.
Cogn. Behav. Neurol. 2013, 26, 1–5. [CrossRef]

38. Damian, A.M.; Jacobson, S.A.; Hentz, J.G.; Belden, C.M.; Shill, H.A.; Sabbagh, M.N.; Caviness, J.N.; Adler, C.H.
The montreal cognitive assessment and the mini-mental state examination as screening instruments for
cognitive impairment: Item analyses and threshold scores. Dement. Geriatr. Cogn. Disord. 2011, 31, 126–131.
[CrossRef]

39. Malek-Ahmadi, M.; Powell, J.J.; Belden, C.M.; O’Connor, K.; Evans, L.; Coon, D.W.; Nieri, W. Age- and
education-adjusted normative data for the Montreal Cognitive Assessment (MoCA) in older adults age
70–99. Aging Neuropsychol. Cogn. 2015, 22, 755–761. [CrossRef]

40. Brenkel, M.; Shulman, K.; Hazan, E.; Herrmann, N.; Owen, A.M. Assessing Capacity in the Elderly:
Comparing the MoCA with a Novel Computerized Battery of Executive Function. Dement. Geriatr. Cogn.
Disord. Extra. 2017, 7, 249–256. [CrossRef]

41. Levine, B.; Bacopulous, A.; Anderson, N.; Black, S.; Davidson, P.; Fitneva, S.; McAndrews, M.; Spaniol, J.;
Jeyakumar, N.; Abdi, H.; et al. Validation of a Novel Computerized Test Battery for Automated Testing.
In Stroke; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; Volume 44, p. 196.

http://dx.doi.org/10.1016/j.jalz.2008.07.003
http://dx.doi.org/10.1177/1533317514522852
http://dx.doi.org/10.1038/nature09042
http://dx.doi.org/10.1016/j.neuroimage.2016.01.007
http://dx.doi.org/10.1093/ije/dyw023
http://dx.doi.org/10.1136/jnnp-2016-315260
http://dx.doi.org/10.1093/sleep/zsy182
http://dx.doi.org/10.1037/0882-7974.13.1.8
http://dx.doi.org/10.1111/j.1750-8606.2009.00110.x
http://dx.doi.org/10.1371/journal.pone.0215203
http://dx.doi.org/10.1016/j.neuropsychologia.2018.07.013
http://dx.doi.org/10.1111/j.1532-5415.2005.53221.x
http://dx.doi.org/10.1097/WNN.0b013e31828b7d26
http://dx.doi.org/10.1159/000323867
http://dx.doi.org/10.1080/13825585.2015.1041449
http://dx.doi.org/10.1159/000478008


Diagnostics 2019, 9, 114 13 of 13

42. Robbins, T.W.; James, M.; Owen, A.M.; Sahakian, B.J.; McInnes, L.; Rabbitt, P.; James, M.; Owen, A.M.;
Sahakian, B.J.; McInnes, L.; et al. A Neural Systems Approach to the Cognitive Psychology of Ageing
Using the CANTAB Battery. In Methodology of Frontal and Executive Function; Routledge: London, UK, 2004;
pp. 216–239.

43. Yaffe, K.; Falvey, C.M.; Hoang, T. Connections between sleep and cognition in older adults. Lancet Neurol.
2014, 13, 1017–1028. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S1474-4422(14)70172-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Computerized Cognitive Assessment—Historically 
	Cognitive Assessment in the Internet Age 
	Meaningful Change 
	Validity of At-Home Testing 

	Online Testing vs. Existing Alternatives 
	Neural Validation 
	Conclusions 
	References

